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SUMMARY

This analysis treats the air forces and moments in supersonic
potential flow on osclllating triangular wings and a seriles of swept-
back and arrow wings with subsonic leading edges and supersonic trailing
edges. For the wings undergoing sinusoldal torsional oscillations simul-
taneously with vertical translations, the linearized velocity potential
18 derived in the form of a power series in terms of a frequehcy param-~
eter. This method can be useful for treatment of simlilar problems for
other plan forms and for wings undergoing other sinusoidal motions.

For trianguler wings, as many terms of such a series expansion as may
be desired can be determined; however, the terms after the first few
, become very cumbersome.

Closed expressions that include the reduced frequency to the third
power, an order which is sufficilent for a large class of practical
applications, are given for the velocity potential and for the components
of chordwlse section force and moment coefficilents.

These wings are found to exhibit the possibility of undamped tor-
sional oscillations for certain ranges of Mach number and locations of
the axis of rotation. The ranges of these parameters are delineated for

triangular wings.
INTRODUCTION

This paper is concerned with the derivation of expressions for the
velocity potentisl and associated forces and moments for oscillating
triangular wings in supersonic flow. The boundary-velue problem for
the linearized velocity potential for an apex-forward trianguler wing
oscillating in a supersonic main stream may be classified, according to
reference 1, as "purely supersonic" if the leading edges of the triangle
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are outside the Mach cone emaﬁating from the apex of the triangle or
"mixed supersonic" if the leading edges are inside this Mach cone.

In the purely supersonic case the principle of independence holds;
that is, the flow on the upper surface of the wing is independent of the
flow on the lower surface and vice versa. Garrick and Rubinow (refer-
ence 1) have shown that the boundary-value problem for the velocity
potential in the purely supersonic case can be satisfied by simple dis-
tributions of sources with local strength proportionsl to the local
prescribed normal velocity of the wing.

In the mixed supersonic case the principle of independence does not
hold. Boundary-value problems for lift-producing wings in this case can
be satisfied by distributions of doublets; the relation between doublet
strength and normal velocity of the wing is, however, in general, not
simple. The determination of this relation requires the solution of an
integral equation that employs the potential of a time-dependent unit
doublet as kernel and limits of integration that depend on Mach number
and wing plan form.

For treatment of problems that involve boundary conditions that are
independent of time, such as constant angle of attack, constant rate of
pitching, and so forth, the doublet potential, employed as kernel of the
integral equation, is considered independent of time and in these cases
the integral equations for triangular wings can be solved by a straight-
forward process.

For treatment of problems of oscillating wings, however, it is
necessary to employ, as the kernel of the integral equations, a doublet
potential that varies harmonically with time and in this case the solu-
tion of the integral equation, generally, becomes very cumbersome. If
the doublet potential or kernel is expanded in terms of the freguency
of oscillation, however, use can be made of knowledge of solutions of
integral equations for problems that are independent of time to obtain
an expanded form of solutlon for a wing undergoing harmonic oscillations.
Such a procedure was demonstrated in treatments of rectangular wings in
references 2 and 3. (The derivation in reference 3 is based on an
erroneocus argument, regarding certaln terms in the normal velocity;
neverthe}ess; the finel expression given for the velocity potential is
correct.

The purpose of the present paper is to meke use of the expanded
form of the velocity potential to obtain the forces and moments, based
on the first few terms of this potential, for a rigid triangular wing
performing vertical and piltching sinusoidal oscillations in mixed super-
sonic flow. Although as many terms of the expanded potentlal as may be
desired can be obtained after the first few terms, the process becomes
very cumbersome. The flow normal to the leading edge is subsonic but
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the flow normal to the trailing edge 1s considered to be supersonic.
This latter consideration implies that the potential derived for trian-
gular plan forms may be used to calculate the aerodynamic forces and
moments for other plan forms that may be formed with the triangular wing
by cutting the trailing edges so that they lie ahead of the Mach cones
emanating from their foremost points.

Other approaches to the solution of the problem of oscillating
triangular wings have been given by Robinson (reference 4), Haskind and
Falkovich (reference 5), and by Stewartson (reference 6). In both
references It and 5 formal solutions to the problem were obtained in terms
of special systems of curvlilinear coordinates. Robinson's solution was
glven in terms of a double summation of trilineer combinations of Bessel
functions of the first kind with Lame functions of the first and second
kinds. Similarly, the solution of Haskind and Falkovich was given in
terms of summations of Bessel functions of the first kind combined with
elliptic integrals of the first and second kinds. In both references 4
and 5 the potentlals were not reduced to useful forms for calculating
forces and moments.

In reference 6 Stewartson maskes an Interesting though specialized
use of the Laplace transformaetion to develop a method whereby terms of
the velocity potential for triangular plan forms, expanded as herein,
can be obtalned. Stewartson gives formulas that, except for errors
presumebly in printing, can be used to develop the potential to the
second power of the frequency but he omits many details in his derivation.

SYMBOLS

¢ disturbance-velocity potential
X,¥,2 rectangular coordinates attached to wing moving in

negative x-direction

£, rectangular coordinates used to represent space location
of doublets in xy-plane

Zy function defining mean ordinates of any chordwise section
of wing such as y = y; as shown in figure 1

w(x,y7,%) vertical velocity at surface of wing along chordwise
section at y =y

X0 gbscissa of axis of rotatlon of wing as shown in figure 1
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time
vertical displacement of axis of rotation

amplitude of vertical displacement of axis of rotation,
positive downward

angle of attack

amplitude of angular displacement about axis of rotation,
positive leading edge up

time derivatives of h and «, respectively
velocity of main stream
velocity of sound

free-stream Mach number (V/c)

frequency of oscillations

reduced frequency (%?)

half apex angle

represents functions of ®, x, and M

functions used to denote doublet distribution functions
constants associasted with D, depending on PBC
constants‘depending on BC

constants depending on BC and M

root chord of wing
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8 semispan of wing

o slope of ray passing through vertex of wing

q,N,6,t dummy varlables

p density

Ap local pressure difference

P section force (total force at any spanwise station)

Ll,LQ,L3,Lu components of section force coefficients

M section moment (total moment about x = xg at any
spanwise station)

Mi,Mé,M3,Mh components of section moment coefficients

My total component of damping-moment coefficient

ANATYSTIS

Boundary-Value Problem for the Velocity Potential

Referred to a rectangular coordingte system moving forwerd at a
uniform supersonic speed in the negative x-direction (see fig. 1) the
differential equation for the propagation of small disturbances that
must be satisfled by the velocity potential is

10 3V, 3% 3% 3%
c2<at+vax>¢“ax2+ay2+az2 W

The main governing boundary condition to be satisfied by the velocity
potentlial 1s that the flow be tangent to the surface of the wing, or

(9?1) - w(x,y,t) = v o, O (2)
oz 7—30 ox ot

where Zp, 1s the vertical displacement of any point of the wing. For
the particular case of a wing independently performing small sinusoidal
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pltching oscillations of amplitude ag about some spamwise axls X
and small sinusoidal vertical translations of amplitude hg, the
quantity Z; in equation (2) is

Zm=emE1.0(x—xo)+ho]=a(x-xo)+h (3)

(see fig. 1(b) for sketch showing instantaneous displacement of sec-
tion. y = y1.) For convenience, the frequency of oscillation of both
pitching and translatory motion i1s denoted by w. Considering these
motions to occur at separate frequencies would add no difficulties to
the derlvation.

Substituting the expression for Z, (equation (3)) into equation (2)
glves '

w(x,y,t) = Vo + &,(x - xp) + h | (4)

Equetion (4) implies that the velocity potential may be expressed as the
sum of separate effects due to position and motion of the wing associated
with individual terms of this equatlion, namely

¢=A¢m+¢&’+¢ﬁ (5)

Derivation of §

In order to obtain the analytical expression for the potential 525,
i1t is necessary to derive only one of the subsidlary potentilals appearing
in equation (5), say @y. The other subsidlary potentials @y and @

can then be obtained from the derived expression for ¢a, by simple
comparison.

In order to satisfy the boundary-value problem for ¢a,, a convenlent

. procedure is to start with the expanded form of the potential of a uni-’
form distribution of doublets. Then, for a given power of the frequency
of oscillation this potentiael, as will be shown in the followlng analysis,
can be modified so that, when integration is made over the appropriate
region, the results satisfy the differential equation (1) to the given
power of the frequency and satisfy the conditlon of tangential flow
exactly. The type of doublet required is that with its axis normal to
the plane of the wing. The potential of such a*doublet may be obtained
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from the potential of a source, located in the plane of the wing, by
partial differentiation with respect to the direction normal to the
plane of the wing. Similarly, the potential of a distribution of the
required type of doublets can be obtained from a distribution of sources
located in the plane of the wing. e o :

The potential at (x,y,z) due to sources located at points (&,1,0)
in region r (illustrated in fig. 2) of the xy-plane which satisfies
the differential equation (1) may be written as

e~ im(x-¢) cos <-6- R)
gs=2= [ [ —— " at an (6)
T
where
5o M _ Mo
Cﬁe V—BE
and

R=(x - £)2 - p2(y - )2 - 22

Expanding the integrand of equation (6) into a power series in ®,
collecting terms with respect to &, and differentiating the resulting
integral with respect to 2z gives the expanded form of the potential
of a uniform distribution of doublets, nemely

Va 9 1 om-
%:-?agfflja.Ol§+a02R+...+aomR 3+...+
hy
g(all%+al2R+...+almR '3-;...>+...+

gn(anl%+an2R+...+anmR2m-3+---)]d§dT] (7)
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where

T
- SEEQ_ eldx ' (8)

and

mel jer2m2 o
(( = - 2)! (M) "ol (9)

For convenience in the succeeding discussion and anelysis equa-
tion (7) mey be written in the following form:

_v_.a_“’ £
¢D—1t6 ff d§d1]+

ie(_;f%( )am_ . f J 3 o dn] (10)

An interesting aend significant property of equation (10) is that
the coefficient of each power of & satisfles the differential equa-

tion (1) and has the form of a source potential with strength propor-
vl
tional to (22) e-10E, Thig property may be shown by writing the coef-

nl

ficlent of ¢t as follows:

) -1 /= - —_
R ™ &= (en - 2)1\M R M
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A more general solution to equation (1) may thus be obtained by intro-
ducing properly chosen weight or distribution functions (denoted by
ED,(&,m)) into the coefficients of tB in equation (10). Let this

solution be denoted by @;; then it can be written as

= n+l
¢1=V;“§;Zamff Dn(é,n)%—dg an +

= (—rl)m'l 5)2“"2 n+l_om-3
b D (E,n)e " 1R3 g g 12)
;(E‘m—z)rm a”llf alen ! ‘(

Examination of equation (12) shows that, at the surface z = 0, the
potential ¢l is determined by the first integral expression but that

both integral expressions may glve rise to normal velocity. In succeeding
steps in this analysis it is shown that the distribution functions Dn(g,n)

in equation (12) can be determined so that the first integral expression
teken alone will exactly satisfy the boundary condition of tangential

9
flow for ¢a5 that is (SJE = Va. Also, any additional normal veloc-
zZ
z=0

ity thet arises from the second integral expression cen be canceled, to
the required order, by consideration of additional doublet solutions to
equation (1). The problem of satisfying the boundary-value problem for
the velocity potential ¢a mey thus be reduced to that of determining

the appropriate distribution functions and additional solutions to
equation (1).

In order to show that the first integral expression in equation (12)
can be made to satisfy the boundary condition for @, the coeffi-

cient Vaanl appearing in this equation is first'considered, If the
analytical expression for the coefficient a,; (equation (8)) is multi-

plied by x® and summed with respect to n, the result is ildentically
Va. This result may be shown as follows:

= = (4m)® i -1 ‘
Vo E xBa . = Vo E———l—-e' = Vae e~ = Vo (13)
n=0 ol e n:
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It 1s significant that this identity holds if only terms in ®@ +to any
glven power are considered. For example, retaining only terms including
® to the third power gives

n B2, E)

Va. ( - dox - + x|i® + °x -

).

Va (1k)

-2 o

2

Next consider the normal velocity at z =0 associated with ¢l, namely

®  (1)8-1 \om-2 N
LTaae) [ e
m=2 - : b o

(15)

Examination of this eguation and equation (13) reveals that the first
integral expression on the right of equation (15) yields Va exactly,
provided the distribution furctions are determined so that the following
Integral equation is satisfied:

\;cc Z.lin;o —Q ff n( E,m) _ d§ dn = Vax® (16)

The kernel of this integral equation has the form of a steady-state
doublet potential. The problem of determining the distribution functions
for this case is therefore analogous to determining distribution functions
for certain steady-state problems. The distributlon functions for steady-
state problems, at least for those involving conical flow, can be deter-
mined by a stralghtforward process, the main details of which are given
in the appendix. In this appendix a method of solving equation (16) for
a triangular wing 1s derived and the distribution functions required to
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derive the velocity potential for this wing to the third power of ®
are glven. It is to be noted that the method derived for solving equa-
tion (16) for a triangular wing may be generalized to apply to various
plan forms and to problems of satisfying the boundary conditions for
various velocity distributions.

From this point on, the analysis is restricted to the derivation of
terms of the expanded potential involving o to the third power. The
method for deriving these first few terms is quite general and can be
used to obtain as many additional terms of the expanded potential as may
be desired. As previously pointed out, however, terms of the potential
after the first few become very unwieldy

If the appropriate distribution functions are known for terms
involving @ to the third power, equation (15) may be written as follows:

W = Vo + Wy | (175

where

Vo lim 32 TP 1ix — ‘
BB (o w0

is the additional vertical velocity arising from the second integral
expression in equation (12) involving @ to the third power. In order
to meintain the boundary condition for @y, this additional velocity Vo
must be canceled. As previqusly pointed out this canceling, to a
required order, can be achieved by considering other doublet solutions
to equation (1). For this particular case consider a relation 5i

gimilar to @; (equation (12)) having the following form:

T Vi
# = yo
x

v

Zm_é ff Dp(,n)e™*3 at an +

_qyo-1 om-9
(En2—2)_(M) & ff D, (ﬁ,n)§n+3R2m’3 G dn:l (19)
m=2 =
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The vertical velocity Wy, to the third power of @&, arising from this
expression is

— _ Vo lim 3?2 (6 a5 8, o= £
=00 a?(ﬁ) fflzl-iaxx)DO?+:w)Dl-% dg an (20)
r

In this equation the distribution functions ﬁo and -ﬁl can be deter-

mined, as discussed subsequently, by the method given in the appendix so
that %, is identically equal in value but opposite in sign to Wp.

When these functions are determined, the boundary condition for ¢a. is
satisfied by w; + W} = Va, which implies that the potential ¢cx. to the
third power of @ 1is given by the sum

o =P1 + Bl (21)

to this power of .

Expressions for 50 and 51 are given together with expressions
for other distribution functions Dy, Dy, Dy, and D3 in the appendix.
In regard to the determination of Do and D;, as well as other orders
for D, in more extended treatments, it may appear necessary, in order

to formulate integral equations for these functions, to perform the
generally unwieldy integrations of the type

2
Jam 2 ff Du(E,m) VRS ag an (22)
r

appearing in equation (15). In general, however, the information neces-
sary for the determination of the functions D, can be obtained, as is

done in the derivation of the functions D, in the appendix, by exam-
ining the values of these integrals and their derivatives with regard to

the parameter 6 = % at some particular value of 6.

Returning to equation (21) and introducing into this equation the
expression for @y (equation (12)) and the expression for 1
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(equation (19)), each to the third power of @, glves for the
potential ¢cr, to this power of ® +the following result:

¢Q=Vag—zL/;f{gnoﬂl-ﬂ&-?£+—ﬂ2£x3)%_(§§-%x)lﬂ?L

&

2 R oM 2 3 R

Since it may be shown, as in reference T, for example, that

Vo 1im B_ff n+l -
250 3% . Dy dt dn = Vax®D,(x,y)

equation (23) reduces, at z = 0, to

o, = Va.[( - imx - a?e 'x‘2‘+ % x3>Do(x,y) +

x(ﬂE + o7 - mZXE)Dl(x,y) - x2<%-2 - % x)Dg(X;y) -

— D — —
B i) + xz(ng_a. - x)50<x,y> v a3 B ﬁl(x,y):| (21)
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which, after the expressions for the distribution functions given in the
appendix are substituted and the terms are regrouped, may be written in
the following simple form:

= ValoB - P [hg + (g - A) i - 018 - oiPeRy? +

051853 + 053922 | (25)

The quantities Ag, Aj, and o0y, Oy, 03, and o) in this equation
are part of a group of guantities Ay, A,J » Ok, Which are defined in

the appendix; these quantities are sultable for writing the potential
and expressions subsequently derived for forces and moments in simple form.
The quantities Ay and X,j are functions only of the product PBC (ratio

of tangent.of the half apex angle of the triangle to the Mach angle) and
are shown plotted in figures 3 and 4, respectively. The quantities O)

are functions of Mach nmumber M and the product PBC. These quantities
may be evaluated for particular values of M from the plots of XJ in

figure k.

The quantities Ay eand A; are the same, as should be expected,
as the parameters assoclated, respectively, with constant angle of attack
and constant pitching of triangular wings of references 8 and 9.

Expressions for the potentials ¢&, and ¢h can be obtained by the
method discussed for obtaining ¢cv or they can be obtained to the third

order of ® by comparison and synthesis from eguation (23). After
simplification these expressions are

- VP T - 2rpt + a2 - o3 + aety)-

xgcBx2 - y-‘?-(AO - 22 imx - 0@ - ‘02693%2)] (26)

g = };[c%@ - 7%(8 - 27 3Bx - 0172 - o Bzyz)] (27)



NACA TN 2457 . 15

At BC =1 or C = %3 which is the condition at which the Mach lines

from the apex of the triangle coincide with the leading edges of the
triangle, equations (23), (26), and (27) reduce, respectively, to

¢a=2—W9v§-'B%2<l-ﬁx BE+ 5 gp,e 2 -2 gPp2y2 4

B 3 9oM2 90M=2
2+ 7 a3, 28 - 1 mﬁseyzx> (28)
210M2 210M2

.2 o 2 81 (M2 + 7)
¢Q—Bﬂx2-say2[<3x- 2 o 5 poye . EME,

(M2 -er 7) Bay%t) _ x0<1 _imx PR +25 Bl 2 —25 -252y2>:|
315M 3 90M 9oM

(29)

. _2h [3_ 55y ix MM +5-p0 2M-5 )
B = o Bzy( 3T o o BY2)  (30)

For M =1 or for values of the product PBC such that ﬁ2C2 < 1,
equations (23), (26), and (27) reduce, respectively, to

Bo, = VayfcPx® - y2 (31)

By = a\Cc2x® - ye(x - xo) (32)
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i, = BoB2 - 2 (33)

These expresslons are the counterpart of the potential for vanishingly

small trianguler wings in steady flow (reference 10) and may thus be
regarded as the potential of a small triangle oscillating in pitch and
vertical transletion in either subsonlc or supersonic flow.

Forces and Moments

As pointed out in the introduction, the velocity potential for the
triangular wing can be used to calculate the aerodynamic forces and
moments for other plan forms that can be formed from the triangular wing
by cutting the trailing edges so that they lie shead of the Mach cones
emanating from their foremost points. Sketches of different plan forms
thus obtained are shown in figure 5.

The force and moment coefficients desirable for most flutter cal-
culations are those that yield the spanwise variation in these quantities
or chordwlse force and moment coefficients. These coefficients are
obtained by Integrating the pressure difference along any chord for the
forces and the pressure difference multiplied by a moment arm for the
moments. A convenient procedure in deriving these quantities is to

introduce the reduced-frequency parameter %? = k end to employ the

the variables X, y, and Xy in a new sense as nondimensional quan-
tities obtained by dividing the o0ld varisbles by the maximm chord &b
of the wing.

The pressure difference between the upper and lower surfaces of the
wing is .

_ LB
&p = 20(2b ol at> (34)

The force, positive downward, at any section of amy of the plan
forms shown in figure 5 may be expressed as
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X1 1
P =2 @dx:-hpbf <V8+B>dx
X ]_
= 2oV Q{I o, 2ikf @ ax (35)
y/c y/c

where x; has the following values with respect to the different con-
figurations shown in figure 5: .

In plan form A

x3 =1 (362)
In plan form B
X =1 - % (36b)
In plan form C
. X =1+ L (36¢)
In plan form D .
xp=1+L  ror 0§y§m<—2§?- 1)
T (36a)
xl=%c- for m(-ETEE-l)<y§-2§b-
J

After the expression for @, given by the sum of equations (25), (26),
end (27), is substituted into equation (35) end the integration is per-
formed, the results may be reduced to the form

1

P= —hprekeeith%Q (Ly + 1Lp) + ag(Lg + 1L1,£| (37)
vhere
\C2x, 2 -
1, = k Bé yz(hMQxl - BzAO) + cosnl —& (38a)
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Ay Py 12
Ly = \[cPx, 2 - Flj? - —35r(3M201 - 232;\1) - 35%(31420%2 + eﬁexl)]

(38p)

. 2
Ly = 022 - y2 % + 4%(632142»2 - gy - Moy + 2M252x1) +
38 ,

2
—1—3;‘202 B2ay - 382M°c2a3 - 3M*C20p - 2M2>~1]} - 2x0la (38¢)

oMPkx, 3
1) = (2%, 2 - YEE%E(QBQM + p2Ag - lF1427»1) + %(231'12 -

Moy y2
4282, + lattos - hB2M205) - —thé—y(ha”ca% + 282, - Moy +

Cx: 2
1IM282C202 - BM)'LCEU)_L - 83202M206):| - cosh™1 71[% -

Dﬁd% yll'(ll-ﬁzczA:.} _ 2,82),2 + M20'l + 1-!—1\&252()20'2)] - 2xOL2 (38d)

. In a similer manner, the moment (positive leading edge up) &bout
the axis x = x5 -is

X1
-llbzf (x - x0) Ap dx
y/c

My
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where

)-l-xle ll. .
N 33—2(1;142)»1 - B Ao) + },_13%?(%2)'1 + BEAO) - 2xgL, (40a)

My = 0% - ¥2 [ EMQ]:13 (2 - 3y) -

M2kx- 2 2
n L (2[32).1 + Mzol + hMQBQCEUE):] + l:Aoy -

BC Ck

Cx
M;_h:fi yh<2;32xl + M201 + lI—M2C20'l):| cosh™t _y]; - 2xglo (40b)

2x73 |
R ﬁﬁ-’%l - —;%—-(BI‘A]_ - oM22; - 6MPp2h, + 3M“cl) +

;LC_E(B n) - ptclay - 2622 + 22, - iy - lm“;agczoz)} +

Agy? oy 2 L2 2,2 2,2
|:Ck2 +E)%§(BA1—1I-MBI"CA3-2MBX1+-2MB>~2-M401-

muﬁ%zce)] cosh1 C—x- - 2xO<Ml +Ig + 2x0L1) (4oc)




20 NACA TN 2457

hx, 2 :
M, =\c%x® -y |— (B2AO + 282, - lpmle) - 53%(132% - B2ay +

38°k

-

16M2 4 p

16M1x; 2y
T (55602n, 4+ opth, - M2820, + Peic20, - MYo, -
15602 ( 3 kS 1 2 3

10#‘5202% + Mea?cs - 10M213‘*czc6) + %%;(53602% -
uplh, + ou220; + sM2eMC20, + 2Ml*or3 + sM2c2g), -
2M23205 + 51423)'"020'6)] - axO(M2 + Ly + 2x0L2) (kod)

In equation (37), for example, the quantity (Iq + iLyp) is the lift-force

coefficient associated with vertical motion of the wing. The real part
I, 1is in phase with the vertical position of the wing and the complex

part Lo 1s 90° out of phase with this position. Similar‘definitions
apply to the 1ift coefficient (L3 + 11)) associlated with pitching motion
and to the moment coefficilents (M; + iM,) and (M3 + iM)). The complex

or out-of-phase terms determine the aerodynamic demping associated with
different wing motions.

Although the expressions for the components of lift-force and moment
coefficients in equations (38) and (L40), respectively, are lengthy, they
may be quite easily evaluated with the aid of the graphs in figures 3
and L.
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DISCUSSION

Sample Calculations

In order to give some indication as to the general nature of the
spanwlse distribution of the different components of 1ift and moment
coefficients, equations (38) and. (40) have been evaluated at different
spanwise positions y for plan form A (fig. 5(a)) for the following set

of conditioms: BC = 0.5, C = 1.0, xp=0.6, M= Js/h, and k = 0.1.

These semple results are plotted as functions of spanwise position in
figure 6. The spanwise variations of the different components of 1ift
force are shown in figure 6(a) and the corresponding variations of
moment coefficients in figure 6(b).

In figure 6 note that, for the particular set of conditions for this
exemple, the maximum values of the components of moment coefficients M,

Mp, and M3 are positive and act near the tips of the wing, whereas the
meximum value of the component M), 1is negative but also acts near the

tips. It may also be noted that the integrated (in spanwise direction)
values of the components of moment coefficient, or components of total
moment coefficient, would in each case have the same sign as the maximum
value of the corresponding component of section moment coefficient. This
result is not necessarily true in general, because changing some of the
parameters involved in the evaluation of the spanwise distribution of
some components of both force and moment coefficients may change the
distributions significantly from those shown in figure 6.

The fact that the total component of moment coefficient My 1s

negative in the example just discussed shows that, for the conditions of
the example, this term would not contribute to the aerodynsmic damping -
but, on the contrary, would act as a source of energy for the oscillating
system. This circumstance is significant since it leads to the possi-
bility of the single-degree-of-freedom torsional instability discussed

in the followlng paragraphs. ,

Undamped Torsional Oscillatlons

The wing plan forms discussed herein, like two-dimensional and
rectangular wings, exhibit the possibility of undamped torsional oscil-
lations for certain ranges of Mach number M and location of axis of
rotation xg5. This fact is borne out, ‘as indicated in the preceding

paragraph, by considering the integrated (spanwise) value of the com-
ponent of damping moment M) associated with pltching or torsional
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motions. The main results of this phenomenon can be obtained by con-
sidering very slow oscillations so that only terms in equation (404d)
for Mh involving the reduced frequency k +to the order l/k need be

retained. In this case,

" 2 _ 2 2 - n2
e Y _ll'X]_ l:(M2 + l)AQ - A:L()-I—M2 - 2)] + 8(—32M——éi) }\,lyz +

My, =
4 k g2 gec

)

l%‘"[(Ao - (2 - D)y + Bzono] (1)
B . _

’

For the triangular plan form (fig. 5(a)) the integrated value or total
component of moment coefficient is

_ 2
M, = é%%k_ -(2M2 + 1)Ay + 3(2M2 - 1)a; + thI:AO - (M2 - l)Al] +
Uxo2(M2 - 1)%} : (42)

In general, the condition of torsional stability or Instability
depends on the sign and magnitude of M) in equation (42). Positive

values of ﬁh indicate stable conditions and negative values indicate

the possibility of torsional instability. Between the stable and unsteable
conditions, that is when M) vanishes; a borderline state of unstable

equilibrium separating demped and undamped torslonal oscillations exists.

The ranges of values of Mach number M and location of axis of
rotation ¥Xg for which M), vanishes for some selected values

of C = tan € are shown plotted in figure 7. The regions inside the
curve in this figure indicate instabllity. The dashed curve, on which
some of the solid curves terminate, represents the locus of values of M
and xg for which M) vanishes for the whole class of triangular wings

with supersonic leading edges, that is, for triangular wings where
BC 2 1. It will be noted that M) vanishes for velues of Xx; eahead of

the root %m-chord position. It will also be noted that, as the vertex
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angle ¢ = tan” l C decreases to 30°, the range of values of Mach number
for which Mh vanishes decreases sharply.

In conclusion; investigation of equation (42) shows that, for a
glven value of the reduced frequency X, Mach number M, and location of
the axis of rotation Xy, the magnitude of the damping coefficient Mh

decreases as C decreases and, consequently, torsional instaebility is
less likely to occur with slender triangles then with wider triangles.

Langley Aeronautical Lsboratory
National Advisory Committee for Aeronautics
Langley Field, Va., June 19, 1951
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APPENDIX
METHOD FOR DETERMINING DISTRIBUTION FUNCTIONS

In this appendix a method of obtaining the distribution functions
is developed in detail. Expressions for the distribution functions
required to derive the velocity potential to the third power of the
frequency of oscillations and a set of functions useful in writing the
expression for the potential in concise form are given.

As indicated in references 8 and 9, where the triangular wing is
treated for constant angle of attack and for comstant rolling and pitching
motions, a convenient form of the velocity potential corresponding to a
distribution of vertical velocity proportional to xZ is

c §1 n+2
$n = 1o f Fy(o) ao f : at (A1)
n 3z Lo o W(x - £)2 - g2y - ot)2 - p242

where o is the slope of a ray passing through the vertex of the wing
(n = ot), €1 1is the least value of § +that causes the denominator R

in the.integrand to vanish, and F (o) = % D,(&,n) is the distribution
function that is to be determined so that

op,

(Wn)z=o = (BT)FO = x° (42)

In equation (Al), the Integrand is noted to be singular at the
limit €& = §;. A form of the integrand which avoids this difficulty is

obteined by making the following change of variables:

__ X 2 ]
=—2X (1 - p200) -
q 1-[3202( )
- Bx_ o, 22 2 0
N-l_Bzce\/(e-c) +x2(l-Bc)
- (A3)

g =2L

X
T=cosh-13'£1—§




¢

where T 1s the new varisble of integration. With these substitutions equation (A1) becomes

-19
c cosh 5
19 Fn(o) 5
g =12 —n (@ - N cosnh T)ot= g7 (AL)
Bomoz Yo\l - B2 Yo
and the corresponding expression for wp = (52—) » Which 18 en integral equation for Fn(c),
z=0

1s

} ) -1 9
1 lim c Fn(o) osh™ &= n+1
Yo = T a0 -p2(n + 2)LZ; @-_ 5202)3/2 JQC Nnc% -_ cosh T) cosh T dT +

cosh"l 4

C  Fplo) do N |
B#ze(n + E)L[; (1 f 3202)5/2k4: Nn'e(% - COBhT)n(% + n cosgh T) cosh 7 dr

- & | | | | (25)

In this equation the value of wp obtained by performing the indicated inmbegrations end then
golng to the 1limit z = O is the same as the value that would be obteined by first golng to
the limit and then performing the integration but neglecting singulerities, poimted out sub-
sequently, that arlse when the value of o sapproaches the value of 6. Making use of this
fact reduces the calculations involved and simplifies the integral equation for F,. Thus

pessing to the 1limit gives for equation (A5)

LGH2 ML VOVR
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2
w=_s(n+2)j‘c Fn(o) do Yo pnfq _
" x ¥ (1-13202)3/EJ; ° (No

cosh T)n+1 cosh T 4t

2 ' (46)

where Ny 1is the value of N at 2z = 0. The requirement that the normal

velocity be proportional to x® and independent of y dimplies that all
derivatives of equation (A6) with respect to y or 6 must vanish, or
that Fp(o) must be so determined that the final value of the integral

in this equation be independent of 6. The requirement that all deriv-
atives of equation (4A6) with respect to 6 +vanish leads to other equa-
tions for Fp, and, after n + 1 such differentiations, the equations

acquire forms for which solutions are known. The value of F, can then
be determined from these known ‘solutions by evaluating each of the

at any arbitrary value of 6 1in the range -C <6 <C

derivatives T
de
as follows:

The Kth derivetive of 1w, with respect to 6 (equation (A6)) gives
the following integral equation for Fp:

o _62(n+e)j” Fn(o) do f No _LK( ]
ak * Vo (1-822) Y2 <l"'5202> q

Ng cosh T)n+1 591—?[?—1. o(t) dTr = 0 (AT)
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where

o(T) =

(n+1)! Bog + cosh T \
(n+1-K)!\lNgcosh T-g

K(n + 1)! /Bc+ cosh T K'lN -1,
(n+2-K)!\gvo_cosh'r—q °

Kk - D)(n+ 2)tfporcosn T VB o e
(n+3-K! Wocosnr-g/ ° i

When K =n + 1, the expression for o(T) may be recognized as being a
binomial expression, namely

o(t)

(n+ 1)1 Bo‘+cosh‘r__in+l
NocoshT-q No

(n + 1)1(BoNg + g)2*L
(-No)n+l(

q - No cosh T)n+l

(n + 1) 10+l
(—No)n+1(q - Ng cosh T)Btl

(48)




Thus the integral equatilon corresponding to the n + 1 derivative of w, is B
+1 n+3 2n+2  nC 1nn-1 E2z
™y _ (-1)M(n + 2) 1722 0 Fn(o) do Noyi-P2a
ke J 5 J cosh T dr
ae™ T - n+2 Yo

No™+2(1 - p202)

. _ndl, wendi 2o 0w (g)
S (e 2)ix1 - BTE A =0 (49)
n (6 - o)B+3

Further differentiation of w, leads to other equations involving integrals similar to that in
equation (A9) and, as will be seen subsequently, 1s not necessary for the determinetion of Fp.

The singularity at o = @ in equation (A9) is a result of going to the limit z = 0 after
equation (AS5) and, as previously implied, is %o be ignored.

Consilder the following equatiorn similar to equation (AS):

fc fp(o) 8o
Je (6 - )3

It is known by analogy with problems in Incompressible flow and msy be shown by direct substi-
tution and reduction thaet this equation is setisfied for amy velue of n (n =0, 1, 2, « ‘)
by the function

LGHE ML YOVN

£o(0) = \c? - @ (a11)
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This function also satisfies equation (A9) for any value of n and
aKwy

ag¥

derivative. A more general form of solution to equation (A1Q0) may be

shown to be
e S (A12)

vhere m 1is an integer and m S n. The validity of this solution
follows, since

satisfles equation (A7) for all derivatives beyond the nth

H
Il

» m m 59m-r
om:e-(e—d)] =gh(6_o')r (A13)
T H g
and
C2 - 02 o mlem‘r C2 -0
(6 - o)°3 ALk
(6 - an*3 Z;;j(m -r)ir! (6 - g)n’r+3 (A1)

Bach term of the summation in equation (A1l4) is found to have the form
of the integrand in equation (A10), from which the function (A12) is
concluded to satisfy equation (A105 and equation (A7) for all values of
K > n.

From the foregoing dlscussion and consideration the distribution
function F,(o) may be uniquely determined in terms of expression (A12)

as Tollows: |

Consider the expression

Fplo) = Agfg + Aqfq + . . . + AT) (A15)
where the coefficients Ay, A, . . . A, are constants that are to
be determined. ‘

Bach term on the right of'equation (A15) is noted to satisfy equa-
tion (A7) for all derivatives beyond the nth and a total of
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/

n + 1 parameters is to be determined. If expression (A15) is intro-
duced into equations (A6) and (A7) and the indicated integrations in
equation (A6) and in equation (A7) for K=1, 2, . . . n are performed,
n + 1 linear equations are obtained in Ay, A, . . . A, from which

these constants may be determined.

The integrations with respect to o in equations (A6) and (A7) are
in general difficult and tedious to perform; however, as previously
pointed out 1t 1s only necessary to perform the integrations for some
particular value of 6 1in the range -C <68 <C. The integrals have
their simplest form when 6 = 0 and the integrations can be made for
this value of 6 by reductions and use of formulas in reference 11.

The distribution functions Fy(o), Fq(o), Fy(o), F3(o), Folo),
and Fl( o) and functions Dy(&,n) calculated by the foregoing method are
as follows:

Fo = Agfc2 - o2 Dq

Il
Q
L\
v
o
L}
=
N

Fp = Aq\C2 - 02 . Dy = Ap\c2e2 - 92
F2 = (A-2 + A33202)VC2 - 0'2 D2 = <A_2 + A3 9?23) 0252 - n2
2
Fg = (8 + A53202)V02 - g@ D3 = (Ah + ”:LZ”)\/C_QW
= — 2
Fo = g + mptollZ - By = (ng ¢ ag LR
Ty = (ag + Agp0R)|C® - o Py = (As + A %@m
where
1
Ao =gr
_ g2c2
, A = 1 - B

B2C3F' + (1 - B2C2)E’
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_ 243
2d1ds + peCBap?

2do
2d1d3 + BC2ap°

A3 =

_ 6dg
6dydg + poC2d5”

6d5

A5

 6aydg + p2c2a52

=%ﬂ7-6%%§8
2dyd3 + BECCa,?

A6

_ 2(a1dg + dpdq)
2d1d3 + 2C2a,°

_ Sdgd - BCRan0
© 6aydg + BPCRas?
\

_ 6(apay + asao)
© 6aydg + BPCRA52

Ag

The quantities d, are defined as

_ 5(8%2 - 3pkeMypr 4 (2 - 10822 + 6B§ch)E'

9 o(1 - pec2)e

31
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d3

a,

d5

d7—

dg

%
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_ 2B2c2F' - (1 + B2C2)E’
(1 - pc2)2

_ (3822 - selcYET - (6 - 10822 + oplich)g:
(1 - Bc?)?

) (2782c2 - 31phch + 1286cE)F' + (6 - 55202 + 65lich - 24p6C6)E!
6(1 - p22)3 |

_ (9822 - plcMrr - (3 + TBRCR - 2plcME!
(1 - 2c®)3

_ (3822 - gplch - 2p6cb)F - (6 - 15822 + Splict - usbcb)m!
(1 - p%?)3

_ 5%2(31 - Fl)
2(1 - p2c?)

_ B2CeF' - E
1 - p&c2

] B2c2[(B2c2 - 3)F' + (b - 282c2)E']
6(1 - pc2)2
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Combinations of these functions useful for writing the potential
in concise form are:

AO"A]._X A9
z 7 -2 =%
2 ?-MT=02
by - By
2 3 MM
-—.-—j-::0'3
2A3 - As 3 M@
7 = M
A
M - Ao = MMy o
1-2=2% 2 "2 I
A2 - A3 =25
M1
A5 = Ag = M Y - M2 05
A
3 A
M+ 5= Ag Ay + E%g = 0§
Aohg
e A9
Aph
_.2_7.=Xlo
A
‘%?Q = All
A
1
—‘_éA_9_=X12
A9 - M1 = M3
Mo - M2 = My
It will be noted that the quantities Ay (1 = 0, 1, . . . 9) and
s (=1, 2, . . . 14) are functions only of the product PBC. They
are shown plotted in figures 3 and k4, respectively. The quantities
o (k=1,2, .. .6) are functions of Mach number M and the

product BC and can be evaluated for particular values of M from the
plots of Ay and Aj.
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Figure 1l.- Sketch illustrating coordinate system and the two degrees of
freedom o and h.
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Figure 3.- Variation of the quantities Aj as functions of BC.
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() 3=1, 2, and 3.

Figure 4.~ Variation of the guantities Aj as functions of BC.
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(a) Lift force.

Figure 6.- Spanwise distribution of components of 1ift force and moment
-coefficients for x5 = 0.6. BC = 0.5; C = 1L.0; k = 0.1; M = |/571+.




NACA TN 2457 43

B .
H30 ‘
T

. 7N R
' NV

(b) Moment.

Figure 6.~ Concluded.
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